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ABSTRACT
Rapid and accurate estimates of seismic ground failure and building damage are beneficial to efficient emergency
response and post-earthquake recovery. Traditional approaches, such as physical and geospatial models, have limited
accuracy and resolution due to large uncertainties and the limited availability of informing geospatial layers. The
introduction of remote sensing techniques has shown the potential to provide supplementary information for rapid
hazard estimation through analyzing earthquake-induced correlation changes between pre- and post-event satellite
images. Nevertheless, the changes in satellite images are the result of overlapping ground failure, building damage,
and environmental noise, making it challenging to categorize and estimate different seismic hazards and impacts
directly from satellite images. Here we design a novel causal graph-based Bayesian network that continuously
updates seismic ground failure and building damage estimates from satellite images by modeling the physical
interdependencies between geospatial features, ground shaking, ground failure, building footprints, and building
damage, as well as satellite images. The key approach is based on the idea that there exist physical interdependencies
among multiple natural hazardous geological processes, and thus incorporation of the physical interdependencies
allows an effective fusion of physical insights from existing USGS models and rich but noisy information from
remote sensing observations, e.g., Damage Proxy Maps (DPMs), and further reduces bias and uncertainties in
estimations. The framework introduced provides a scalable and flexible way to deal with highly complex
multi-hazard scenarios. Our experiments show that integrating satellite images through Bayesian network improves
estimation accuracy.

Introduction
Earthquake-induced ground failures and building damage cause significant economic losses and fatalities. For
example, the 2008 Wenchuan earthquake in China triggered about 200,000 landslides, leading to around 26,500
deaths [1] in addition to nearly 60,000 shaking-induced fatalities. The series of earthquakes in Christchurch, New
Zealand, in 2011, induced liquefaction of over one-third of the city, affecting more than 6,000 buildings and resulting
in enormous economic costs [2]. These induced hazards have been shown to cause disruption to lifelines and
structural damage to buildings [3]. Therefore, rapidly and accurately localizing and estimating ground failure and
damage occurrences are beneficial to effective and efficient response and recovery.
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Most existing approaches for earthquake-induced ground failure and building damage estimation suffer from
low performance due to outdated data, region-specific trends, and environmental noises. Current practices by the
USGS utilize statistical models calibrated against patterns of past ground failures using historical inventories given
geospatial susceptibility proxies (including slope, lithology.) and ground motion to estimate single-type ground
failure modes separately [4]. The resolution and accuracy of these statistical models are often constrained by the
limited availability of geospatial features as well as modeling uncertainties. For example, it is difficult to acquire
comprehensive high-resolution lithology, land cover type, and other predictor variables for landslide model
susceptibility, or soil strength and water depth needed for liquefaction modeling.

Recently, remote sensing techniques have been developed to capture satellite images before and after an
earthquake and difference them. Damage Proxy Maps (DPMs) are further extracted based on coherences between
satellite images to indicate earthquake-induced ground surface changes [5]. Nevertheless, it is difficult to categorize
different types of changes through these imagery data, such as ground failure, building damage, and noise from
vegetation growth and anthropogenic modifications, especially when these changes co-occur [6]. Some prior studies
incorporated geospatial features and remote sensing observations for estimating single-type ground failure using
linear combinations or black-box supervised classifiers [7, 8]. However, these approaches lack consideration of
complex and event-varying physical interdependencies among multiple co-occurring ground failure types and
building damage, which limit their applicability for common multi-hazard, mixed-signal scenarios.

Figure 1. Overview of the posterior and model updating based on causal Bayesian network.

In this work, we introduce a causal Bayesian network framework integrating geospatial models with DPMs
through a physics-informed causal graph for fast and effective joint estimation of regional ground failure and
building damage. The Bayesian network uses a probabilistic causal graph as the foundation for encoding a set of
conditional dependency relationships among multiple variables, e.g., physical causal relationships among multiple
geospatial features, ground failures, building footprints, building damage, and DPMs, as shown in Fig. 1. To infer
posterior distributions from the complex probabilistic graph, we build our algorithm on variational inference, which
is a powerful statistical machine learning technique for inferring complex probabilistic models with many
unobserved variables [9]. A new stochastic variational inference algorithm is further designed to jointly approximate
the posterior distributions of unobserved ground failures and building damage, as well as their statistical correlations,
by maximizing the lower bound of the likelihood of observed DPMs. The algorithm is also flexible enough to
incorporate new ground truth information of ground failures and building damage.



Methodology
We design a causal graph to best depict and approximate the causally linked earthquake-induced hazards. The
original causal graph is built based on causal relationships among ground failure, building damage, geospatial
features, ground shaking, Damage Proxy Maps (DPMs), and environmental noises. As shown in Fig.1, nodes refer to
different types of hazards and observations, and edges represent causal relationships between them. Earthquake
ground shaking, triggers landslides and liquefaction, and ground shaking, landslides, and liquefaction further result
in building damage. Environmental noises, such as subtle environmental factors that are not predicted by geospatial
features, also contribute to DPM signals. Finally, ground failure, building damage, and environmental noises which
all lead to ground surface changes captured by DPMs, must be distinguished from each other.

Specifically, given one location (i.e., one pixel in DPMs), we first denote for landslide (LS), for liquefaction𝑥
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are assumed to have categorical distributions. The unobserved ground failure nodes have categorical variables where
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damage, moderate damage, severe damage, and collapse. We use to refer to pixel-wise observation, which is a𝑦 𝐷𝑃𝑀
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Figure 2. Evaluation on the January 2020 Puerto Rico earthquake: (a) our posterior landslide estimations, (b) our posterior liquefaction
estimations, (c) our posterior building damage estimations, and (d) ROC curves of prior and posterior liquefaction model.

All nodes are linked by an arbitrary directed acyclic graph in Fig. 1. We further give quantitative definitions of
these links, i.e., statistical relationships, between different random variables. For example, even if neither landsliding nor
liquefaction is present, building damage is still possible due to the shaking. Using to represent the parents of node𝑃 𝑖( ) 𝑖
(excluding the leaf nodes and ), the distribution of is modeled as:𝑥
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For LS/LF/BD, the above logit relationship models the dependencies between the nodes and their parent nodes following
the assumption of the logistic regression model used by the USGS [10, 11]. If all parents are active ( ),𝑥
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the M classes (i.e., multinoulli distribution), the joint probability is further modeled as:
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Given , we use to define the parents of . Based on the empirical probability density function of DPMs, we𝑦 𝑃 𝑦( ) 𝑦
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For each location , where L refers to the entire seismic zone, we define a variational distribution which𝑙∈𝐿 𝑞 𝑋𝑙( )
further factorizes over hidden (unobserved) nodes. At each geo-location, is defined to approximate the posterior𝑞
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probability that node at location is active, for example, refers to the probability of landslide occurrence at the 𝑖 𝑙 𝑞
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location . For any , the joint log-likelihood of the observed DPMs ( can be lower bounded by factorizing the𝑙 𝑞 𝑋𝑙( ) 𝑦𝑙)
Bayesian network with a set of posterior distributions of unobserved random variables (e.g., landslide, liquefaction,
building damage, and noise) as follows:

. (4)𝑙𝑜𝑔 𝑝 𝑦𝑙( ) ≥ 𝐸
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With the tight bound of log-likelihood as objective function, we can further maximize the lower bound to find optimal
posteriors of unobserved variables, i.e., LS, LF, and BD. As the output, the posterior probability of building damage,
landslide, and liquefaction at each pixel will be jointly optimized with the causal coefficients of each edge in the Bayesian
network. The computational cost depends on the number of pixels to be processed, which is ultimately determined by the
satellite image resolutions and size of the covered seismic zone.

  Evaluation is conducted for the Mw 6.4 earthquake in the southwest area of Puerto Rico on January 7, 2020 [9].
The reconnaissance team reported more than 775 affected buildings [12] and 800 ground failure observations induced by
the earthquake [13]. DPMs are generated by the ARIA team using the SAR images from the Copernicus Sentinel-1
satellites of the European Space Agency [14]. Our estimation results are presented in Figure 2. Incorporating the DPM
reduced the uncertainty in the posterior landslide model (Fig. 2a) with a 6% decrease in False Positive Rate, the posterior
liquefaction model (Fig. 2b, 2d) with a 12.2% improvement in True Positive Rate, and the building damage posterior
model (Fig. 2c) with a True Positive Rate of over 76%.

Conclusions
In this project, we introduce a novel causal graph-based Bayesian inference framework that integrates remote
sensing data and geospatial models to enable accurate and high-resolution seismic ground failure and building
damage estimates. Our framework can deal with large-scale and highly-complex multi-hazard scenarios and benefit
rapid earthquake responses by providing accurate and high-resolution information about earthquake impacts.
Through one holistic causal graph-based multi-layer Bayesian network, ground failure and building damage are
modeled as categorical random variables and connected with causal dependencies. We jointly update the estimation
of unobserved ground failure and building damage as well as their causal dependencies based on the prior ground
failure models and DPMs. Our evaluation shows that integrating satellite images through Bayesian network
improves ground failure estimation accuracy. The advantage of our approach is that the causal graph allows us to
model more complex and nonlinear relationships among different variables and thus more accurately approximate
their physical relationships. Furthermore, our approach is flexible to various scenarios without observed ground truth
labels by using advanced machine learning techniques to approximate the posterior probability of ground failures
and building damage from complex Bayesian networks.
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